A characterization of finite symplectic polar spaces of odd prime order
نویسندگان
چکیده
A sufficient condition for the representation group for a nonabelian representation (Definition 1.1) of a finite partial linear space to be a finite p-group is given (Theorem 2.9). We characterize finite symplectic polar spaces of rank r at least two and of odd prime order p as the only finite polar spaces of rank at least two and of prime order admitting nonabelian representations. The representation group of such a polar space is an extraspecial p-group of order p1+2r and of exponent p (Theorems 1.5 and 1.6). Supported by DAE grant 39/3/2000-R&D-II (NBHM fellowship), Govt. of India
منابع مشابه
The geometry of generalized Pauli operators of N-qudit Hilbert space, and an application to MUBs
We prove that the set of non-identity generalized Pauli operators on the Hilbert space of N d-level quantum systems, d an odd prime, naturally forms a symplectic polar space W2N−1(d) of rank N and order d. This generalizes the solution (by the author) of a recent conjecture posed by Saniga-Planat (which covers the case d= 2). As an application, we give a new short proof for the existence of max...
متن کاملRecognition by prime graph of the almost simple group PGL(2, 25)
Throughout this paper, every groups are finite. The prime graph of a group $G$ is denoted by $Gamma(G)$. Also $G$ is called recognizable by prime graph if for every finite group $H$ with $Gamma(H) = Gamma(G)$, we conclude that $Gcong H$. Until now, it is proved that if $k$ is an odd number and $p$ is an odd prime number, then $PGL(2,p^k)$ is recognizable by prime graph. So if $k$ is even, the r...
متن کاملTight sets, weighted m -covers, weighted m -ovoids, and minihypers
Minihypers are substructures of projective spaces introduced to study linear codes meeting the Griesmer bound. Recently, many results in finite geometry were obtained by applying characterization results on minihypers [8, 17, 18]. In this paper, using characterization results on certain minihypers, we present new results on tight sets in classical finite polar spaces and weighted m-covers, and ...
متن کاملNew characterization of some linear groups
There are a few finite groups that are determined up to isomorphism solely by their order, such as $mathbb{Z}_{2}$ or $mathbb{Z}_{15}$. Still other finite groups are determined by their order together with other data, such as the number of elements of each order, the structure of the prime graph, the number of order components, the number of Sylow $p$-subgroups for each prime $p$, etc. In this...
متن کاملFactor-Group-Generated Polar Spaces and (Multi-)Qudits
Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group G, we first construct vector spaces over GF(p), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 114 شماره
صفحات -
تاریخ انتشار 2007